Vol.12 No.4 Jan                   Back to the articles list | Back to browse issues page

XML Print


Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Abstract:   (132 Views)
Background: Inflammation contributes to cancer pathobiology through different mechanisms. Higher levels of pro-inflammatory cytokines can lead to hyperinflammation and promote cancer development and metastasis. For cancer treatment, Doxorubicin (DOX) can be encapsulated into the poly-lactic-glycolic acid (PLGA) nanoparticles. This study aimed to investigate the impact of doxorubicin-loaded PLGA nanoparticles (DOX-PLGA NP) on the expression of pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β in the MCF-7 cells.

Methods: The DOX-PLGA NP was prepared by loading doxorubicin into PLGA and characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxic effect of the nanoparticles was determined by the MTT assay, and their impacts on the expression of pro-inflammatory genes were assessed by qRT-PCR.

Results: The encapsulation efficiency and loading capacity were 60±1.5 and 1.13±0.21 percent, respectively. The zeta potential and mean DOX-PLGA nanoparticle size were -18±0.550 mV and 172±55.6 nm, respectively. The 50% inhibitory concentration (IC50) of the DOX-PLGA NP on MCF-7 cell viability was 24.55 µg/mL after 72 hours of treatment. The qRT-PCR results revealed that the 20 µg/mL concentration of the DOX-PLGA NP significantly suppressed the expression of the pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β compared to DOX alone (20 µg/mL). Additionally, the suppression effect of DOX-PLGA NP on the expression of these pro-inflammatory genes was dose-dependent.

Conclusion: These results show that DOX-PLGA NP efficiently suppressed the expression of pro-inflammatory genes. Furthermore, encapsulation of DOX into PLGA nanoparticles significantly improved the effectiveness of DOX in suppressing pro-inflammatory genes in MCF-7 breast cancer cells.

Full-Text [PDF 343 kb]   (27 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/12/10 | Accepted: 2024/01/14

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb